4.8 Article

Tensile strain for band engineering of SrTiO3 for increasing photocatalytic activity to water splitting

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 278, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2020.119292

关键词

SrTiO3; Strain effect; Band engineering; Photocatalytic water splitting

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan through the Japan Society for the Promotion of Science [16H06293, 19H00821]
  2. Grants-in-Aid for Scientific Research [19H00821] Funding Source: KAKEN

向作者/读者索取更多资源

SrTiO3 is a well-known highly active photocatalyst with high energy conversion efficiency. In this study, we investigated the formation of oxygen vacancy by using the chemo-mechanical effect that was introduced by the dispersion of metal particles into grain and photocatalytic activity to water splitting. Au dispersion on SrTiO3 followed by sintering treatment was studied for introduction of chemo-mechanical strain because of a different thermal expansion coefficient; the introduced chemo-mechanical strain generated oxygen vacancy in SrTiO3. Thus, induced chemo-mechanical strain shows change in electronic band structure resulting in increasing lowest unoccupied molecular orbital (LUMO) level with increasing Au content. Since photoluminescence was significantly decreased by sintering after Au dispersion, the introduced strain effects may work for increasing a charge separation efficiency and adsorption site in water splitting. Therefore, the photocatalytic activity was much increased by sintering treatment after Au dispersion on SrTiO3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据