4.8 Article

Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: Active heterostructure interfaces

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 278, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2020.119279

关键词

Toluene oxidation; Mn2O3; Heterostructure interface; EELS; In-situ DRIFTS

资金

  1. National Key Research and Development Program [2018YFC0214101, 2018YFC0214106]
  2. National Natural Science Foundation of China [21777081, 21936005]

向作者/读者索取更多资源

Mn-based heterostructure catalysts show great potential for catalytic oxidation of toluene owing to the unique properties of their hetero-interfaces. Herein, we tailored the MnO2 heteroepitaxy over Mn2O3 to achieve welldefined morphology and constructed clean MnO2-Mn2O3 heterostructure interfaces by H+/KMnO4 treatment. The T-0.5 catalyst (treating duration of 0.5 h) gave the highest activity and good stability. The interface enhanced the reducibility and oxygen storage capacity compared with pure Mn2O3. Surface reconstruction and metastable facets exposure were observed after the H+/KMnO4 treatment, leading to the easy-release of lattice oxygen. Additionally, abundant oxygen vacancies and redundant coordination lattice oxygen were observed at the MnO2 and Mn2O3 sides of the hetero-interface, respectively. These features provided ample oxygen adspecies and increased lattice oxygen mobility. The interface-related oxygen vacancies facilitated methyl dehydrogenation and demethylation of adsorbed toluene. The redundant coordination lattice oxygen contributed to the enhanced aromatic ring breakage capability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据