4.7 Article

Artificial neural network-based models for predicting the sound absorption coefficient of electrospun poly(vinyl pyrrolidone)/silica composite

期刊

APPLIED ACOUSTICS
卷 169, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apacoust.2020.107472

关键词

Sound absorption coefficient; Deep neural network; Acoustic measurements; Electrospinning; PVP/silica composite

向作者/读者索取更多资源

Polymeric sound absorbers can be produced through electrospinning, a process which allows to fabricate high specific surface materials with a fiber diameter from few nanometers to several micrometers. In this study, a numerical simulation model of the acoustic behavior of poly vinyl pyrrolidone/silica composites were developed. First, the characteristics of the poly vinyl pyrrolidone/silica composites were examined, and the manufacturing of the material were described. Subsequently, the results of the measurements of the sound absorption coefficient were analyzed. Finally, the results of the numerical modeling of the acoustic coefficient were reported. The neural network-based model showed high Pearson correlation coefficient values (0.942), indicating many correct predictions. Taking into account the bell shaped acoustic response of the studied blankets as a function of frequency, the possibility to foresee the needed mass with the neural network-based model will be of great value for the applications where high acoustic absorption is required in specific limited frequency ranges. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据