4.7 Article

pH sensitive chitosan-mesoporous silica nanoparticles for targeted delivery of a ruthenium complex with enhanced anticancer effects

期刊

DALTON TRANSACTIONS
卷 45, 期 45, 页码 18147-18155

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6dt03783f

关键词

-

资金

  1. National Natural Science Foundation of China [21371082, 21501074]
  2. Natural Science Foundation of Jiangsu Province [BK20141102, BK20151118]
  3. Key Medical Talent Project of Jiangsu Province [RC2011097]
  4. Foundation of Health Department of Jiangsu Province [Q201405]

向作者/读者索取更多资源

Nanocarriers are widely used for delivering drugs to tumors and their development is progressing steadily. In this study, a pH sensitive mesoporous silica nanocarrier, RuNHC@MSNs-CTS-Biotin (CTS = chitosan), is developed for the targeted delivery and controlled release of a ruthenium(II) N-heterocyclic carbene (RuNHC) complex. The RuNHC@MSNs-CTS-Biotin nanoparticles were composed of RuNHC loaded mesoporous silica nanoparticles (MSNs) coated with chitosan-biotin (CTS-Biotin) conjugates. CTS traps the RuNHC complex inside the mesopores and biotin is used as a targeting ligand to improve specific cell uptake. The particle size of RuNHC@MSNs-CTS-Biotin was around 90 nm with a zeta potential of 12.0 mV and the RuNHC loading capacity was 26.31%. The release of RuNHC from RuNHC@MSNs-CTS-Biotin was in a pH-dependent manner, and it exhibited a 59.71% terminal release ratio at pH 5.0, but almost no release under neutral conditions (pH 7.4). Its in vitro cellular uptake and anticancer activity revealed that RuNHC@MSNs-CTS-Biotin could be selectively internalized in cancer cells by biotin recep-tor-mediated endocytosis and this resulted in a significant improvement in anticancer activities as compared with the RuNHC complex. This multifunctional nanocarrier system provides a promising platform for the development of precisely controllable cancer therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据