4.8 Article

Metal-Organic Framework Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4

期刊

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
卷 60, 期 15, 页码 8455-8459

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202015735

关键词

carbon dioxide fixation; charge transfer; metal– organic frameworks; nanostructures; photosynthesis

资金

  1. Hong Kong Research Grant Council (RGC) General Research Fund [CityU 11305419]
  2. Australian Research Council Discovery Project [DP180102540]

向作者/读者索取更多资源

Encapsulating Cu2O nanowires in metal-organic frameworks (MOFs) enhances activity and stability, facilitates charge separation and CO2 uptake, leading to selective photocatalytic CO2 reduction into CH4. This work demonstrates an effective strategy for CO2 conversion by integrating MOFs with metal oxide photocatalyst.
Improving the stability of cuprous oxide (Cu2O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2O nanowires are encapsulated by metal-organic frameworks (MOFs) of Cu-3(BTC)(2) (BTC=1,3,5-benzene tricarboxylate) using a surfactant-free method. Such MOFs not only suppress the water vapor-induced corrosion of Cu2O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2O to the LUMO level of non-excited Cu-3(BTC)(2) has been evidenced by time-resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据