4.3 Article

Species-specific metabolic responses of songbird, shorebird, and murine cultured myotubes to n-3 polyunsaturated fatty acids

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00249.2020

关键词

fatty acids; migration; muscle metabolism; peroxisome proliferator-activated receptors; primary cell culture

资金

  1. National Sciences and Engineering Research Council (NSERC) [052452015 RGPIN]

向作者/读者索取更多资源

The research shows that yellow-rumped warblers and sanderlings respond differently to n-3 PUFA, with the former increasing metabolic enzyme activity and gene expression, while the latter's aerobic performance is improved.
Migratory birds may benefit from diets rich in polyunsaturated fatty acids (PUFAs) that could improve exercise performance. Previous investigations suggest that different types of birds may respond differently to PUFA. We established muscle myocyte cell culture models from muscle satellite cells of a migratory passerine songbird (yellow-rumped warbler, Setophaga coronata coronata) and a nonpasserine shorebird (sanderling, Calidris alba). We differentiated and treated avian myotubes and immortalized murine C2C12 myotubes with n-3 PUFA docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and with monounsaturated oleic acid (OA) to compare effects on aerobic performance, metabolic enzyme activities, key fatty acid (FA) transporters, and expression of peroxisome proliferator-activated receptors (PPARs). Sanderling and C2C12 myotubes increased expression of PPARs with n-3 PUFA treatments, whereas expression was unchanged in yellow-rumped warblers. Both sanderlings and yellow-rumped warblers increased expression of fatty acid transporters, whereas C2C12 cells decreased expression following n-3 PUFA treatments. Only yellow-rumped warbler myotubes increased expression of some metabolic enzymes, whereas the sanderling and C2C12 cells were unchanged. PUFA supplementation in C2C12 myotubes increased mitochondrial respiratory chain efficiency, whereas sanderlings increased proton leak-associated respiration and maximal respiration (measurements were not made in warblers). This research indicates that songbirds and shorebirds respond differently to n-3 PUFA and provides support for the hypothesis that n-3 PUFA increase the aerobic capacity of migrant shorebird muscle, which may improve overall endurance flight performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据