4.6 Article

Alamandine improves cardiac remodeling induced by transverse aortic constriction in mice

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00328.2020

关键词

alamandine; cardiac hypertrophy; MrgD receptor; renin-angiotensin system; transverse aortic constriction

资金

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico/Brazil (CNPq)
  2. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
  3. INCT NanoBiofar

向作者/读者索取更多资源

Alamandine, the newest identified component of the renin-angiotensin system, has protective effects in the cardiovascular system by preventing cardiac remodeling such as myocyte hypertrophy and fibrosis. The study demonstrates that alamandine can improve various aspects of cardiac remodeling induced by pressure overload.
Alamandine is the newest identified peptide of the renin-angiotensin system (RAS) and has protective effects in the cardiovascular system. Although the involvement of classical RAS components in the genesis and progression of cardiac remodeling is well known, less is known about the effects of alamandine. Therefore, in the present study we investigated the effects of alamandine on cardiac remodeling induced by transverse aortic constriction (TAC) in mice. Male mice (C57BL/6), 10-12 wk of age, were divided into three groups: sham operated, TAC, and TAC + ALA (30 mu g/kg/day alamandine for 14days). The TAC surgery was performed under ketamine and xylazine anesthesia. At the end of treatment, the animals were submitted to echocardiographic examination and subsequently euthanized for tissue collection. TAC induced myocyte hypertrophy, collagen deposition, and the expression of matrix metalloproteinase (MMP)-2 and transforming growth factor (TGF)-beta in the left ventricle. These markers of cardiac remodeling were reduced by oral treatment with alamandine. Western blotting analysis showed that alamandine prevents the increase in ERK1/2 phosphorylation and reverts the decrease in 5'-adenosine monophosphate-activated protein kinase (AMPK)alpha phosphorylation induced by TAC. Although both TAC and TAC + ALA increased SERCA2 expression, the phosphorylation of phospholamban in the Thr17 residue was increased solely in the alamandine-treated group. The echocardiographic data showed that there are no functional or morphological alterations after 2 wk of TAC. Alamandine treatment prevents myocyte hypertrophy and cardiac fibrosis induced by TAC. Our results reinforce the cardioprotective role of alamandine and highlight its therapeutic potential for treating heart diseases related to pressure overload conditions. NEW & NOTEWORTHY Alamandine is the newest identified component of the renin-angiotensin system protective arm. Considering the beneficial effects already described so far, alamandine is a promising target for cardiovascular disease treatment. We demonstrated for the first time that alamandine improves many aspects of cardiac remodeling induced by pressure overload, including cell hypertrophy, fibrosis, and oxidative stress markers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据