4.8 Article

Machine Learning Predictions of Block Copolymer Self-Assembly

期刊

ADVANCED MATERIALS
卷 32, 期 52, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202005713

关键词

block copolymers; machine learning; nanomanufacturing; ridge regression; self‐ assembly

资金

  1. National Science Foundation [DMR1606911]
  2. Semiconductor Research Corporation
  3. Tokyo Electron Ltd.
  4. CMSE, an NSF MRSEC [DMR1419807]

向作者/读者索取更多资源

Directed self-assembly of block copolymers is a key enabler for nanofabrication of devices with sub-10 nm feature sizes, allowing patterning far below the resolution limit of conventional photolithography. Among all the process steps involved in block copolymer self-assembly, solvent annealing plays a dominant role in determining the film morphology and pattern quality, yet the interplay of the multiple parameters during solvent annealing, including the initial thickness, swelling, time, and solvent ratio, makes it difficult to predict and control the resultant self-assembled pattern. Here, machine learning tools are applied to analyze the solvent annealing process and predict the effect of process parameters on morphology and defectivity. Two neural networks are constructed and trained, yielding accurate prediction of the final morphology in agreement with experimental data. A ridge regression model is constructed to identify the critical parameters that determine the quality of line/space patterns. These results illustrate the potential of machine learning to inform nanomanufacturing processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据