4.8 Review

Failing Forward: Stability of Transparent Electrodes Based on Metal Nanowire Networks

期刊

ADVANCED MATERIALS
卷 33, 期 5, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202004356

关键词

failure; metal nanowire networks; silver nanowires; stability; transparent conductive materials

资金

  1. Equinor ASA
  2. NSERC (Natural Sciences and Engineering Research Council of Canada) Postgraduate Scholarship-Doctoral (PGS-D)

向作者/读者索取更多资源

Metal nanowire-based transparent electrode technologies have matured as a low-cost alternative to ITO, but must overcome stability issues and maintain cost-effectiveness.
Metal nanowire (MNW)-based transparent electrode technologies have significantly matured over the last decade to become a prominent low-cost alternative to indium tin oxide (ITO). Beyond reaching the same level of performance as ITO, MNW networks offer additional advantages including flexibility and low materials cost. To facilitate adoption of MNW networks as a replacement to ITO, they must overcome their inherent stability issues while maintaining their properties and cost-effectiveness. Herein, the fundamental failure mechanisms of MNW networks are discussed in detail. Recent strategies to computationally model MNWs from the nano- to macroscale and suggest future work to capture dynamic failure to unravel mechanisms that account for convolution of the failure modes are highlighted. Strategies to characterize MNW network failure in situ and postmortem are also discussed. In addition, recent work about improving the stability of MNW networks via encapsulation is discussed. Lastly, a perspective is given on how to frame the requirements of MNW-encapsulant hybrids with reference to their target applications, namely: solar cells, transparent film heaters, sensors, and displays. A cost analysis to comment on the feasibility of implementing MNW hybrids is provided, and critical areas to focus on for future work on MNW networks are suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据