4.8 Review

Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications

期刊

ADVANCED MATERIALS
卷 33, 期 3, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202004349

关键词

cellulose nanocrystals; cellulose nanofibers; functional matter; nanocellulose; nanofibrillated cellulose

资金

  1. NordForsk Nordic Center of Excellence project NordAqua [82845]
  2. ERC Advanced Grant DRIVEN

向作者/读者索取更多资源

Nanocelluloses have attracted significant attention in the pursuit of sustainable advanced functional materials. Despite facing challenges in mastering their interactions and tailorability, recent progress in water interactions and advanced hybrid gels has opened up new directions for potential applications like nanocomposites, gels, and composite fibers.
In the effort toward sustainable advanced functional materials, nanocelluloses have attracted extensive recent attention. Nanocelluloses range from rod-like highly crystalline cellulose nanocrystals to longer and more entangled cellulose nanofibers, earlier denoted also as microfibrillated celluloses and bacterial cellulose. In recent years, they have spurred research toward a wide range of applications, ranging from nanocomposites, viscosity modifiers, films, barrier layers, fibers, structural color, gels, aerogels and foams, and energy applications, until filtering membranes, to name a few. Still, nanocelluloses continue to show surprisingly high challenges to master their interactions and tailorability to allow well-controlled assemblies for functional materials. Rather than trying to review the already extensive nanocellulose literature at large, here selected aspects of the recent progress are the focus. Water interactions, which are central for processing for the functional properties, are discussed first. Then advanced hybrid gels toward (multi)stimuli responses, shape-memory materials, self-healing, adhesion and gluing, biological scaffolding, and forensic applications are discussed. Finally, composite fibers are discussed, as well as nanocellulose as a strategy for improvement of photosynthesis-based chemicals production. In summary, selected perspectives toward new directions for sustainable high-tech functional materials science based on nanocelluloses are described.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据