4.8 Article

Finding the Next Superhard Material through Ensemble Learning

期刊

ADVANCED MATERIALS
卷 33, 期 5, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202005112

关键词

ensemble machine learning; high‐ throughput screening; Vickers hardness

资金

  1. University of Houston Division of Research through a High Priority Area Research Seed Grant
  2. Welch Foundation [E-1981]
  3. Texas Center for Superconductivity at the University of Houston (TCSUH)

向作者/读者索取更多资源

An ensemble machine-learning method is utilized to predict the hardness of materials and discover new superhard materials, demonstrating its capability in identifying materials with outstanding mechanical properties.
An ensemble machine-learning method is demonstrated to be capable of finding superhard materials by directly predicting the load-dependent Vickers hardness based only on the chemical composition. A total of 1062 experimentally measured load-dependent Vickers hardness data are extracted from the literature and used to train a supervised machine-learning algorithm utilizing boosting, achieving excellent accuracy (R-2 = 0.97). This new model is then tested by synthesizing and measuring the load-dependent hardness of several unreported disilicides and analyzing the predicted hardness of several classic superhard materials. The trained ensemble method is then employed to screen for superhard materials by examining more than 66 000 compounds in crystal structure databases, which show that 68 known materials have a Vickers hardness >= 40 GPa at 0.5 N (applied force) and only 10 exceed this mark at 5 N. The hardness model is then combined with the data-driven phase diagram generation tool to expand the limited number of reported high hardness compounds. Eleven ternary borocarbide phase spaces are studied, and more than ten thermodynamically favorable compositions with a hardness above 40 GPa (at 0.5 N) are identified, proving this ensemble model's ability to find previously unknown materials with outstanding mechanical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据