4.8 Article

High-Definition Single-Cell Printing: Cell-by-Cell Fabrication of Biological Structures

期刊

ADVANCED MATERIALS
卷 32, 期 52, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202005346

关键词

bioprinting; droplet microfluidics; fluorescence‐ activated cell sorting; single‐ cell printing; spheroids

资金

  1. Chan Zuckerberg Biohub
  2. National Science Foundation Career Award [DBI-1253293]
  3. National Institutes of Health [2R01EB019453, 1DP2AR068129]

向作者/读者索取更多资源

Bioprinting is a powerful technology with the potential to transform medical device manufacturing, organ replacement, and the treatment of diseases and physiologic malformations. However, current bioprinters are unable to reliably print the fundamental unit of all living things, single cells. A high-definition single-cell printing, a novel microfluidic technology, is presented here that can accurately print single cells from a mixture of multiple candidates. The bioprinter employs a highly miniaturized microfluidic sorter to deterministically select single cells of interest for printing, achieving an accuracy of approximate to 10 mu m and speed of approximate to 100 Hz. This approach is demonstrated by fabricating intricate cell patterns with pre-defined features through selective single-cell printing. The approach is used to synthesize well-defined spheroids with controlled composition and morphology. The speed, accuracy, and flexibility of the approach will advance bioprinting to enable new studies in organoid science, tissue engineering, and spatially targeted cell therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据