4.2 Article

Downregulated NORAD in neuroblastoma promotes cell proliferation via chromosomal instability and predicts poor prognosis

期刊

ACTA BIOCHIMICA POLONICA
卷 67, 期 4, 页码 595-603

出版社

ACTA BIOCHIMICA POLONICA
DOI: 10.18388/abp.2020_5454

关键词

Neuroblastoma; long non-coding RNA; NORAD; chromosomal instability; DNA damage

资金

  1. National Natural Science Foundation of China [81702463, 81702787]
  2. Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education [KZ201810025034]
  3. Beijing Advanced Innovation Center for Big Data-Based Precision Medicine [BHME-201804]

向作者/读者索取更多资源

Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in neuroblastoma (NB) pathogenesis. The aim of this study was to elucidate the roles and underlying mechanism of non-coding RNA activated by DNA damage (NORAD) in childhood NB. Both public data and clinical specimens were used to determine NORAD expression. Colony formation, cell proliferation and wound healing assays were performed to evaluate NORAD effects on proliferation and migration of SH-SY5Y and SK-N-BE(2) cells. Flow cytometry was used to examine the cell cycle changes. The expression of genes and proteins involved in chromosomal instability was determined by qRT-PCR and western blotting, respectively. Our results showed that low NORAD expression correlated with advanced tumor stage, high risk and MYCN amplification in both public data and clinical samples. Kaplan-Meier analysis indicated that patients with low NORAD expression had poor survival outcomes. Functional research showed that NORAD knockdown promoted cell proliferation and migration, and arrested the cell cycle at the G2/M phase. Moreover, the expression of the DNA damage sensor, PARP1, increased after NORAD knockdown, indicating a potential contribution of NORAD to DNA damage repair. NORAD silencing also affected the expression of genes and proteins related to sister chromatid cohesion and segregation, which are involved in chromosomal instability and consequent aneuploidy. These results suggest that NORAD may serve as a tumor suppressor in NB pathogenesis and progression. Thus, NORAD is a potential therapeutic target and a promising prognostic marker for NB patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据