4.8 Article

Chemo-Mechanically Operating Palladium-Polymer Nanograting Film for a Self-Powered H2 Gas Sensor

期刊

ACS NANO
卷 14, 期 12, 页码 16813-16822

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c05476

关键词

hydrogen sensor; palladium; nanograting; nanotransducer; self-powered sensor

资金

  1. National Research Foundation of Korea (NRF) - Korean government (MSIT) [2015R1A5A1037668]
  2. Nano.Material Technology Development Program through NRF - Ministry of Science, ICT, and Future Planning [2009-0082580]
  3. Samsung Electronics Co., Ltd.
  4. IC Design Education Center (IDEC), Republic of Korea
  5. National Research Foundation of Korea [2015R1A5A1037668, 4120200113769, 4199990314087] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This study proposes a reliable and self-powered hydrogen (H-2) gas sensor composed of a chemo-mechanically operating nanostructured film and photovoltaic cell. Specifically, the nanostructured film has a configuration in which an asymmetrically coated palladium (Pd) film is coated on a periodic polyurethane acrylate (PUA) nanograting. The asymmetric Pd nanostructures, optimized by a finite element method simulation, swell upon reacting with H-2 and thereby bend the PUA nanograting, changing the amount of transmitted light and the current output of the photovoltaic cell. Since the degree of warping is determined by the concentration of H-2 gas, a wide concentration range of H-2 (0.1-4.0%) can be detected by measuring the self-generated electrical current of the photovoltaic cell without external power. The normalized output current changes are similar to 1.5%, similar to 2.8%, similar to 3.5%, similar to 21.5%, and 25.3% when the concentrations of H-2 gas are 0.1%, 0.5%, 1.0%, 1.6%, 2%, and 4%, respectively. Moreover, because Pd is highly chemically reactive to H-2 and also because there is no electrical current applied through Pd, the proposed sensor can avoid device failure due to the breakage of the Pd sensing material, resulting in high reliability, and can show high selectivity against various gases such as carbon monoxide, hydrogen sulfide, nitrogen dioxide, and water vapor. Finally, using only ambient visible light, the sensor was modularized to produce an alarm in the presence of H-2 gas, verifying a potential always-on H-2 gas monitoring application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据