4.8 Article

Highly Penetrable and On-Demand Oxygen Release with Tumor Activity Composite Nanosystem for Photothermal/Photodynamic Synergetic Therapy

期刊

ACS NANO
卷 14, 期 12, 页码 17046-17062

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c06415

关键词

tumor penetration; photothermal therapy; photodynamic therapy; feedback; on-demand oxygen supply; synergy

资金

  1. National Natural Science Foundation of China [81871476, 81471771]
  2. National Key Scientific Instrument and Equipment Development Project of China [81827801]

向作者/读者索取更多资源

A deep penetrating and pH-responsive composite nanosystem was strategically developed to improve the efficacy of synergetic photothermal/photodynamic therapy (PTT/PDT) against hypoxic tumor. The designed nanosystem ([PHC]PP@ HA NPs) was constructed by coloading hemoglobin (Hb) and chlorin e6 on polydopamine to build small-sized PHC NPs, which were encapsulated inside the polymer micelles (poly(ethylene glycol)-poly(ethylenimine)) and then capped with functionalized hyaluronic acid. The pH-responsive feature made [PHC]PP@HA NPs retain an initial size of similar to 140 nm in blood circulation but rapidly release small PHC NPs (similar to 10 nm) with a high tumor-penetrating ability in the tumor microenvironment. The in vitro penetration experiment showed that the penetration depth of PHC NPs in the multicellular tumor spheroids exceeded 110 pm. The [PHC]PP@HA NPs exhibited excellent biocompatibility, deep tumor permeability, high photothermal conversion efficiency (47.09%), and low combination index (0.59) under hypoxic conditions. Notably, the nanosystem can freely adjust the release of oxygen and damaging PHC NPs in an on-demand manner on the basis of the feedback of tumor activity. This feedback tumor therapy significantly improved the synergistic effect of PTT/PDT and reduced its toxic side effects. The in vivo antitumor results showed that the tumor inhibition rate of [PHC]PP@HA NPs with an on-demand oxygen supply of Hb was similar to 100%, which was much better than those of PTT alone and Hb-free nanoparticles ([PC]PP@HA NPs). Consequently, the [PHC]PP@HA NP-mediated PTT/PDT guided by feedback tumor therapy achieved an efficient tumor ablation with an extremely low tumor recurrence rate (8.3%) 60 d later, indicating the versatile potential of PTT/PDT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据