4.8 Article

Printable Nanocomposite Metalens for High-Contrast Near-Infrared Imaging

期刊

ACS NANO
卷 15, 期 1, 页码 698-706

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c06968

关键词

dielectric metasurface; silicon nanoparticle; effective medium approximation; large-scale nanofabrication; near-infrared camera

资金

  1. Samsung Advanced Institute of Technology (SAIT) - Samsung Electronics
  2. National Research Foundation (NRF) - Ministry of Science and ICT (MSIT) of the Korean government [NRF-2019R1A2C3003129, CAMM2019M3A6B3030637, NRF-2019R1A5A8080290, NRF2018M3D1A1058998]
  3. NRF fellowship - MSIT of the Korean government [NRF-2020R1A6A3A01097965]
  4. NRF - MSIT [NRF-2019K1A47A02113032, NRF2020R1A2C3006382]
  5. Technology Innovation program - Ministry of Trade, Industry & Energy (MOTIE) of the Korean government [20000887, N0002310]

向作者/读者索取更多资源

Printable metalenses made of a silicon nanocomposite offer high refractive index and thermal stability, suitable for intricate nanofabrication and rapid large-scale manufacturing. By optimizing the composition of the nanocomposite, the focusing efficiency of the metalenses can be further increased.
Printable metalenses composed of a silicon nanocomposite are developed to overcome the manufacturing limitations of conventional metalenses. The nanocomposite is synthesized by dispersing silicon nanoparticles in a thermally printable resin, which not only achieves a high refractive index for high-efficiency metalenses but also printing compatibility for inexpensive manufacturing of metalenses. The synthesized nanocomposite exhibits high refractive index >2.2 in the nearinfrared regime, and only 10% uniform volume shrinkage after thermal annealing, so the nanocomposite is appropriate for elaborate nanofabrication compared to commercial high-index printable materials. A 4 mm-diameter metalens operating at the wavelength of 940 nm is fabricated using the nanocomposite and one-step printing without any secondary operations. The fabricated metalens verifies a high focusing efficiency of 47%, which can be further increased by optimizing the composition of the nanocomposite. The printing mold is reusable, so the large-scale metalenses can be printed rapidly and repeatedly. A compact near-infrared camera combined with the nanocomposite metalens is also demonstrated, and an image of the veins underneath human skin is captured to confirm the applicability of the nanocomposite metalens for biomedical imaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据