4.6 Article

Diverse Impacts on Prokaryotic and Eukaryotic Membrane Activities from Hydrophobic Subunit Variation Among Nylon-3 Copolymers

期刊

ACS CHEMICAL BIOLOGY
卷 16, 期 1, 页码 176-184

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acschembio.0c00855

关键词

-

资金

  1. NIH [R01 GM093265, R33 AI121684]

向作者/读者索取更多资源

Synthetic polymers mimicking natural host-defense peptides have demonstrated antibacterial activity with low toxicity towards eukaryotic cells. This study on binary cationic-hydrophobic nylon-3 copolymers found that introducing cyclic constraints and geminal substitution can reduce membrane disruption and enhance antibacterial potency. The relationship between nonpolar subunit identity and biological activity is influenced by factors beyond hydrophobicity and charge.
Synthetic, sequence-random polymers that feature a wide range of backbone and side chain structures have been reported to function as mimics of natural host-defense peptides, inhibiting bacterial growth while exerting little or no toxicity toward eukaryotic cells. The common themes among these materials are net positive charge, which is thought to confer preferential action toward prokaryotic vs eukaryotic cells, and the presence of hydrophobic components, which are thought to mediate membrane disruption. This study is based on a set of new binary cationichydrophobic nylon-3 copolymers that was designed to ask whether factors beyond net charge and net hydrophobicity influence the biological activity profile. In previous work, we found that nonpolar subunits preorganized by a ring led to copolymers with a diminished tendency to disrupt human cell membranes (as measured via lysis of red blood cells) relative to copolymers containing more flexible nonpolar subunits. An alternative mode of conformational restriction, involving geminal substitution, also minimized hemolysis. Here, we asked whether combining a cyclic constraint and geminal substitution would be synergistic; the combination was achieved by introducing backbone methyl groups to previously described cyclopentyl and cydohexyl subunits. The new cyclic subunits containing two quaternary backbone carbons (i.e, two sites of geminal substitution) were comparable or slightly superior in terms of antibacterial potency but markedly superior in terms of low hemolytic activity, relative to cyclic subunits lacking the quaternary carbons. However, new cyclic units containing only one quaternary carbon were very hemolytic, which was unanticipated. Variations in net hydrophobicity cannot explain the trend in hemolysis, in contrast to the standard perspective in this field. The impact of each new polymer on live E. coli cells was evaluated via fluorescence microscopy. All new polymers moved rapidly across the outer membrane without large-scale disruption of barrier function. Increasing the number of quaternary carbons in the nonpolar subunit correlated with an increased propensity to permeabilize the cytoplasmic membrane of E. coli cells. Collectively, these findings show that relationships between nonpolar subunit identity and biological activity are influenced by factors in addition to hydrophobicity and charge. We propose that the variation of subunit conformational properties may be one such factor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据