4.8 Article

Catalytic Hydrogen Doping of NdNiO3 Thin Films under Electric Fields

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 49, 页码 54955-54962

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c15724

关键词

perovskite rare-earth nickelate thin film; ionic-electronic doping; proton diffusion; phase transition; electric-field-assisted hydrogenation

资金

  1. JSPS KAKENHI [19H05055, 19K22129, 18H01871]
  2. Fund for the Promotion of Joint International Research (Fostering Joint International Research) [15KK0236]
  3. Kansai Research Foundation for Technology Promotion
  4. TEPCO Memorial Foundation
  5. SEI Group CSR Foundation
  6. Nanotechnology Platform Project (Nanotechnology Open Facilities in Osaka University) of MEXT, Japan [JPMXP09F20OS0008, JPMXP09S20OS0006]
  7. Grants-in-Aid for Scientific Research [19H05055, 19K22129, 18H01871] Funding Source: KAKEN

向作者/读者索取更多资源

The electric-field-assisted hydrogenation and corresponding resistance modulation of NdNiO3 (NNO) thin-film resistors were systematically studied as a function of temperature and dc electric bias. Catalytic Pt electrodes serve as triple-phase boundaries for hydrogen incorporation into a perovskite lattice. A kinetic model describing the relationship between resistance modulation and proton diffusion was proposed by considering the effect of the electric field during hydrogenation. An electric field, in addition to thermal activation, is demonstrated to effectively control the proton distribution along its gradient with an efficiency of similar to 22% at 2 X 10(5) V/m. The combination of an electric field and gas-phase annealing is shown to enable the elegant control of the diffusional doping of complex oxides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据