4.8 Article

Biodegradable Fe-Doped Vanadium Disulfide Theranostic Nanosheets for Enhanced Sonodynamic/Chemodynamic Therapy

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 47, 页码 52370-52382

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c14647

关键词

Fe doped VS2 nanosheets; sonosensitizers; sonodynamic therapy; tumor microenvironment; biodegradation

资金

  1. National Natural Science Foundation of China [52072253, 51761145041]
  2. Collaborative Innovation Center of Suzhou Nano Science and Technology
  3. Jiangsu Social Development Project [BE2019658]
  4. Jiangsu Natural Science Fund for Distinguished Young Scholars [BK20170063]
  5. Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions
  6. State Key Laboratory of Radiation Medicine and Protection [GZK1201810]

向作者/读者索取更多资源

Sonodynamic therapy (SDT), a noninvasive and highly penetrating tumor therapy, which employs ultrasound and sonosensitizers, has attracted extensive attention because of its ability to treat deep tumors. However, many current sonosensitizers have drawbacks in phototoxicity and limited sonodynamic effect. Herein, as a novel kind of sonosensitizer, iron-doped vanadium disulfide nanosheets (Fe-VS2 NSs) are constructed by a high-temperature organic-solution method and further modified with polyethylene glycol (PEG). With Fe doping, the sonodynamic effect of Fe-VS2 NSs is greatly enhanced, owing to the prolonged electron-hole recombination time. Simultaneously, such Fe-VS2-PEG NSs as a good Fenton agent can be utilized for chemodynamic therapy (CDT) by using the endogenous H2O2 in the tumor microenvironment (TME). Moreover, the multivalent Fe and V elements in the Fe-VS2 NSs can consume glutathione to amplify the reactive oxygen species-induced oxidative stress by SDT and CDT. Utilizing the strong near-infrared optical absorbance and enhanced magnetic resonance (MR) contrast by Fe-VS2 NSs, photoacoustic/MR biomodal imaging reveals a high accumulation of Fe-VS2-PEG NSs in the tumor. The great tumor suppression effect is then achieved by the in vivo combined CDT&SDT treatment. Importantly, most of the injected Fe-VS2-PEG NSs can be gradually decomposed and excreted from the mice, making them as safe sonosensitizers for cancer treatment. Our work highlights a new type of biodegradable sonosensitizer with the ability of regulating TME for applications in cancer theranostics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据