4.8 Article

Accurate Monitoring of Small Strain for Timbre Recognition via Ductile Fragmentation of Functionalized Graphene Multilayers

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 51, 页码 57352-57361

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c16855

关键词

graphene; functionalization; strain sensor; ductile fragmentation; timbre recognition

资金

  1. National Natural Science Foundation of China [51802293, 11890672]
  2. Young Scientific and Technological Innovation Research Team Funds of Sichuan Province [20CXTD0106]

向作者/读者索取更多资源

Sensitivity and linearity are two key parameters of flexible strain sensors. Although the introduction of microstructures (e.g., channel crack inspired by the geometry of the spider's slit organ) can effectively improve the sensitivity, the sudden breakage of the conductive path in turn leads to poor linearity. In practical applications, in order to achieve precise detection of subtle strains, high sensitivity and high linearity are required simultaneously. Here, we report a strain sensor design strategy based on the ductile fragmentation of functionalized graphene multilayers (FGMs) in which the conductive path is gradually broken to ensure high sensitivity while greatly improving the linear response of the sensor. The presence of oxygen-containing functional groups plays a key role in the deformation and fracture behaviors of the sensitive layer. High sensitivity (gauge factor similar to 200) and high linearity (adjusted R-square similar to 0.99936) have been achieved simultaneously in the strain range of 0-2.5%. In addition, the sensor also shows an ultralow detection limit (epsilon < 0.001%), an ultrafast response (response time similar to 50 mu s), good stability, and good patterning capability compatible with complex curved surface manufacturing. These outstanding performances allow the FGM-based strain sensors to accurately distinguish the sound amplitude and frequency, highlighting the sensor's potential as smart devices for human voice detection. Such sensors have potential applications in the fields of smart skin, wearable electronics, robotics, and so on.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据