4.6 Article

Kitaev's quantum double model as an error correcting code

期刊

QUANTUM
卷 4, 期 -, 页码 -

出版社

VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF
DOI: 10.22331/q-2020-09-24-331

关键词

-

资金

  1. NSF [PHY 1720397]
  2. National Defense Science and Engineering Graduate Fellowship
  3. Stanford Graduate Fellowship
  4. Simons Foundation
  5. Virginia Tech
  6. Purdue University

向作者/读者索取更多资源

Kitaev's quantum double models in 2D provide some of the most commonly studied examples of topological quantum order. In particular, the ground space is thought to yield a quantum error-correcting code. We offer an explicit proof that this is the case for arbitrary finite groups. Actually a stronger claim is shown: any two states with zero energy density in some contractible region must have the same reduced state in that region. Alternatively, the local properties of a gauge-invariant state are fully determined by specifying that its holonomies in the region are trivial. We contrast this result with the fact that local properties of gauge-invariant states are not generally determined by specifying all of their non-Abelian fluxes - that is, the Wilson loops of lattice gauge theory do not form a complete commuting set of observables. We also note that the methods developed by P. Naaijkens (PhD thesis, 2012) under a different context can be adapted to provide another proof of the error correcting property of Kitaev's model. Finally, we compute the topological entanglement entropy in Kitaev's model, and show, contrary to previous claims in the literature, that it does not depend on whether the log dim R term is included in the definition of entanglement entropy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据