4.6 Article

Phosphorylation regulates the binding of intrinsically disordered proteins via a flexible conformation selection mechanism

期刊

COMMUNICATIONS CHEMISTRY
卷 3, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s42004-020-00370-5

关键词

-

资金

  1. National Natural Funding of Science [21773298]

向作者/读者索取更多资源

How phosphorylation regulates the binding of the intrinsically disordered protein kinase inducible domain to KIX is unclear. Here bias-exchanged metadynamics simulations of the macromolecular complex suggest that hydrophobic interactions in the phosphorylated domain create a hydrophobic residue cluster which is selective for KIX binding. Phosphorylation is one of the most common post-translational modifications. The phosphorylation of the kinase-inducible domain (KID), which is an intrinsically disordered protein (IDP), promotes the folding of KID and binding with the KID-interacting domain (KIX). However, the regulation mechanism of the phosphorylation on KID is still elusive. In this study, the structural ensembles and binding process of pKID and KIX are studied by all-atom enhanced sampling technologies. The results show that more hydrophobic interactions are formed in pKID, which promote the formation of the special hydrophobic residue cluster (HRC). The pre-formed HRC promotes binding to the correct sites of KIX and further lead the folding of pKID. Consequently, a flexible conformational selection model is proposed to describe the binding and folding process of intrinsically disordered proteins. The binding mechanism revealed in this work provides new insights into the dynamic interactions and phosphorylation regulation of proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据