4.7 Article

An Amyotrophic Lateral Sclerosis-Associated Mutant of C21ORF2 Is Stabilized by NEK1-Mediated Hyperphosphorylation and the Inability to Bind FBXO3

期刊

ISCIENCE
卷 23, 期 9, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2020.101491

关键词

-

资金

  1. KAKENHI grants from Japan Society for the Promotion of Science (JSPS) [15K18365, 17K14955, 19K07837, 15H05667, 18K07519, 16H05318, 18H05215, 17H04035]
  2. Grants-in-Aid for Scientific Research [16H05318, 15H05667, 18K07519, 19K07837, 17K14955, 17H04035, 18H05215, 15K18365] Funding Source: KAKEN

向作者/读者索取更多资源

C21ORF2 and NEK1 have been identified as amyotrophic lateral sclerosis (ALS)-associated genes. Both genes are also mutated in certain ciliopathies, suggesting that they might contribute to the same signaling pathways. Here we show that FBXO3, the substrate receptor of an SCF ubiquitin ligase complex, binds and ubiquitylates C21ORF2, thereby targeting it for proteasomal degradation. C21ORF2 stabilizes the kinase NEK1, with the result that loss of FBXO3 stabilizes not only C21ORF2 but also NEK1. Conversely, NEK1-mediated phosphorylation stabilizes C21ORF2 by attenuating its interaction with FBXO3. We found that the ALS-associated V58L mutant of C21ORF2 is more susceptible to phosphorylation by NEK1, with the result that it is not ubiquitylated by FBXO3 and therefore accumulates together with NEK1. Expression of C21ORF2(V58L) in motor neurons induced from mouse embryonic stem cells impaired neurite outgrowth. We suggest that inhibition of NEK1 activity is a potential therapeutic approach to ALS associated with C21ORF2 mutation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据