4.7 Article

Strong, tough and healable elastomer nanocomposites enabled by a hydrogen-bonded supramolecular network

期刊

COMPOSITES COMMUNICATIONS
卷 22, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.coco.2020.100530

关键词

Nanocomposites; Mechanical properties; Self-healing; Hydrogen-bonded supramolecular network

资金

  1. State Key Laboratory of Environment-friendly Energy Materials research on independent subjects [18FKSY0205, 19FKSY0110]
  2. Australian Research Council (ARC) Discovery Projects [DP190102992, FT190100188]
  3. Longshan academic talent research supporting program of SWUST [17LZX636, 18LZX629]
  4. Graphene Engineering Technology Research Center of Sichuan [2018SCGCZX05]

向作者/读者索取更多资源

Epoxidized natural rubber (ENR)/organic-modified layered double hydroxide (O-LDH) nanocomposites were prepared in this work. The O-LDH can participate in the formation of a hydrogen-bonded supramolecular network in the ENR matrix. The network can effectively improve mechanical properties. With 20 phr O-LDH, the stress, strain and Young's modulus of the final ENR/O-LDH nanocomposite increase to 2.80 MPa, 542% and 4.70 MPa, which is 366%, 113% and 427% of the neat ENR, respectively. Meanwhile, the ENR/O-LDH nanocomposites show self-healing behavior due to the dynamic hydrogen-bonded supramolecular network and chain diffusion. The ENR/O-LDH-10 exhibited the highest self-healing efficiency of about 78% (120 degrees C, 12 h). When the O-LDH content exceeds 10 phr, the restricting effect of fillers weakens the ability to reconstruct hydrogen-bonding, and thus reduces the healing efficiency of the ENR nanocomposites, despite continuous increased mechanical properties. This work opens up many opportunities for creating advanced elastomers that are strong, tough and self-healable through the design of a dynamic supramolecular network.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据