4.7 Article

Cu2SnS3 nanocrystals decorated rGO nanosheets towards efficient and stable hydrogen evolution reaction in both acid and alkaline solutions

期刊

MATERIALS TODAY ENERGY
卷 17, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mtener.2020.100435

关键词

Cu2SnS3@rGO composite; Charge transport; Electrocatalysts; Hydrogen generation

资金

  1. National Natural Science Foundation of China [51972092, 51802145]
  2. Fundamental Research Funds for the Central Universities of China [PA2018GDQT0009]
  3. Key Project of Natural Science Research in Anhui Colleges [KJ2020A0123]
  4. Basic Research Project of the Science and Technology Innovation Commission of Shenzhen [JCYJ20190809115413414]

向作者/读者索取更多资源

Copper-containing bimetallic sulfides are regarded as an emerging low-cost catalyst for electrocatalytic hydrogen generation. In this work, we report for the first time the ternary Cu2SnS3 (CTS) nanocrystals anchored reduced graphene oxide (rGO) nanosheets (CTS@rGO) as a superior electrocatalyst for efficient hydrogen generation. The CTS nanocrystals with 5-10 nm are much homogeneously distributed on the surface of rGO nanosheets. In the CTS@rGO composite, the rGO works as a robust scaffold that can effectively suppress aggregation of the CTS nanocrystals and ensure more exposed active sites on CTS surfaces. Furthermore, the conductive rGO is beneficial to fast charge transfer. Therefore, the CTS@rGO catalyst possesses a large electrocatalytic active surface area and a small charge transfer resistance. As a result, the CTS@rGO exhibits significantly enhanced catalytic activity for hydrogen evolution reaction (HER) in both the acid and alkaline electrolytes in comparison with the pristine CTS nanocrystals. The CTS@rGO delivers a striking catalytic kinetic metrics of a small Tafel slope of 54 mV dec(-1), a low overpotential of 252 mV at a current density of 10 mA cm(-2), long operation stability of 4 day in the acid electrolyte. (c) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据