4.6 Article

High-valence metals improve oxygen evolution reaction performance by modulating 3dmetal oxidation cycle energetics

期刊

NATURE CATALYSIS
卷 3, 期 12, 页码 985-992

出版社

NATURE RESEARCH
DOI: 10.1038/s41929-020-00525-6

关键词

-

资金

  1. MOST [2016YFA0203302]
  2. NSFC [21875042, 21634003, 51573027]
  3. STCSM [16JC1400702, 18QA1400800]
  4. SHMEC [2017-01-07-00-07-E00062]
  5. Yanchang Petroleum Group
  6. Programme for Professor of Eastern Scholar at Shanghai Institutions of Higher Learning
  7. Ontario Research Fund-Research Excellence Program
  8. NSERC
  9. CIFAR Bio-Inspired Solar Energy program
  10. DOE Office of Science [DE-AC02-06CH11357]

向作者/读者索取更多资源

Multimetal oxyhydroxides have recently been reported that outperform noble metal catalysts for oxygen evolution reaction (OER). In such 3d-metal-based catalysts, the oxidation cycle of 3dmetals has been posited to act as the OER thermodynamic-limiting process; however, further tuning of its energetics is challenging due to similarities among the electronic structures of neighbouring 3dmetal modulators. Here we report a strategy to reprogram the Fe, Co and Ni oxidation cycles by incorporating high-valence transition-metal modulators X (X = W, Mo, Nb, Ta, Re and MoW). We use in situ and ex situ soft and hard X-ray absorption spectroscopies to characterize the oxidation transition in modulated NiFeX and FeCoX oxyhydroxide catalysts, and conclude that the lower OER overpotential is facilitated by the readier oxidation transition of 3dmetals enabled by high-valence modulators. We report an similar to 17-fold mass activity enhancement compared with that for the OER catalysts widely employed in industrial water-splitting electrolysers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据