4.6 Article

Influence of strain rate and Sn in solid solution on the grain refinement and crystalline defect density in severely deformed Cu

期刊

MATERIALS TODAY COMMUNICATIONS
卷 26, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.mtcomm.2020.101746

关键词

Copper alloys; Ultrafine-grained structure; Severe plastic deformation; Crystalline defects

资金

  1. Region Normandy (Supermen project)
  2. Saint Petersburg State University [26130576]

向作者/读者索取更多资源

The addition of Sn in Cu results in a significant decrease in grain size, accumulation of higher stored energy, and higher hardness. Increasing the HPT deformation rate leads to significant heat dissipation in CuSn8, compared to Cu. Interestingly, the deformation rate has opposite effects on the microhardness of UFG Cu and CuSn8, decreasing for Cu and saturating faster to higher values for CuSn8.
A commercially pure Cu and a Cu-8 wt.%Sn alloy were subjected to high pressure torsion (HPT) to study the effect of Sn as solute element and deformation rate on the grain refinement mechanism and the defect accumulation in Cu. The microstructure and hardness of produced ultrafine grained (UFG) states of both materials were carefully characterized. We show that addition of Sn in Cu leads to significant decrease in grain size, accumulation of higher stored energy and increase in hardness accompanied with the delay of hardness saturation with shear strain. Increasing HPT deformation rate induces significant heat dissipation in the processed materials markedly pronounced in CuSn8 as compared to Cu. Surprisingly, deformation rate has the opposite effect on the microhardness of UFG Cu and CuSn8, which decreases with the deformation rate for the case of Cu, while exhibits faster saturation to higher values for CuSn8. We also show that despite higher self-heating at higher deformation rates, higher HPT rotation speed provides reduction in grain size and increase in the defect density for CuSn8 alloy. This effect is assumed to be related to strong interactions between Sn solute atoms and strain-induced defects so that mechanically driven effects prevail over dynamic annihilation of dislocations. Finally, we present a qualitative model based on the phenomena of production and annihilation of dislocations. This model was able to reproduce the evolution of grain size, concentrations defects and hardness with different deformation parameters and after the addition of solute element in material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据