4.6 Article

Induction Heating Analysis of Surface-Functionalized Nanoscale CoFe2O4 for Magnetic Fluid Hyperthermia toward Noninvasive Cancer Treatment

期刊

ACS OMEGA
卷 5, 期 36, 页码 23378-23384

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.0c03332

关键词

-

资金

  1. Department of Science and Technology (DST), Govt. of India [IF170288]

向作者/读者索取更多资源

Oleic acid-coated cobalt ferrite nanoparticles were synthesized using the chemical co-precipitation route and characterized by standard techniques for structure, morphology, and magnetic properties analysis. The Rietveld refined X-ray diffraction (XRD) pattern of CoFe2O4 nanoparticles indicated the formation of a cubic-spinel single-phase structure with the Fd (3) over barm space group. The average crystallite size (similar to 12 nm) confirmed the nanocrystalline appearance of the prepared CoFe2O4 nanoparticles. Transmission electron microscopy (TEM) images revealed the spherical nature of both (CoFe2O4) and (OA-CoFe2O4) samples. The absorption bands in the Fourier transform infrared (FT-IR) spectrum at similar to 3418, 3026, 1628, 1404, 1068, 845, 544, and 363 cm(-1) affirmed the spinel ferrite formation and OA attachment. The M-H curve recorded at room temperature showed the superparamagnetic nature of the CoFe2O4 nanoparticles with moderate saturation magnetization (similar to 78 emu/gm). The blocking temperature of the prepared CoFe2O4 nanoparticles obtained from the field-cooled and zero-field-cooled (FC-ZFC) curve was estimated to be 144 K. Further, the characterized surface-modified CoFe2O4 was then added in ethylene glycol/water with various concentrations and characterized by the induction heating technique for the evaluation of their self-heating characteristics. A series of temperature versus time measurements were made by varying the ethylene glycol/water proportion for better understanding of the self-heating characteristics of the prepared CoFe2O4 nanoparticles. All of the findings display the applicability of the surface-modified CoFe2O4 nanoparticles in magnetic fluid hyperthermia toward noninvasive cancer treatment and other bio-applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据