4.7 Article

Study of pyrite based autotrophic denitrification system for low-carbon source stormwater treatment

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jwpe.2020.101414

关键词

Pyrite; Bioretention; System; Stormwater runoff; Low impact development; Denitrification

资金

  1. National Natural Science Foundation of China [51878094]

向作者/读者索取更多资源

Improving the nitrogen removal capacity of stormwater runoff has been the main research direction of bioretention systems in recent years. Heterotrophic denitrification in traditional bioretention systems was often used, but insufficient carbon sources in the runoff limit it. In this study, two bioretention systems using natural pyrite and zeolite as substrates were constructed to explore the feasibility of pyrite-based autotrophic denitrification in bioretention for nitrogen removal. During eight months of operation at natural conditions, the results showed that pyrite had no negative effects on the removal of NH4+-N, but enhanced denitrification in the bioretention system with no or low carbon source in the influent. Pyrite based bioretention system (PBS) can adapt to low temperature and irregular wet and dry alternation. The average NH4+-N, TN, and TP removal efficiency of PBS during eight months were 87.6%, 89.3 %, and 81.6%. The average NH4+-N, TN, and TP removal efficiency of zeolite-based bioretention system (ZBS) were 98.7 %, 47.1 %, and 47.5 %. By-products (SO42- and Total iron) of PBS were all at an acceptable level. The dominant genera in PBS were Denitratisoma (3.6 %), Ellin6067 (2.7 %), Thiobacillus (2.6 %), Thauera (2.1 %), CL500-29 marine group (1.8 %), Sulfuritalea (1.7 %), Subgroup 10 (1.4 %). Genera Thiobacillus, Thauera, and Sulfuritalea were highly related to autotrophic denitrification. Moreover, genera Denitratisoma was highly related to heterotrophic denitrification. This study shows that pyrite could be a promising eco-friendly substrate in the bioretention system for nutrient removal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据