4.7 Article

Use of rapid small-scale column tests for simultaneous prediction of phosphorus and nitrogen retention in large-scale filters

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jwpe.2020.101473

关键词

Adsorption; Phosphorus; Ammonium; Agriculture; Drainage; Water

资金

  1. European Union [675120]
  2. Marie Curie Actions (MSCA) [675120] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

Rapid small-scale column tests (RSSCTs) have been previously used to predict the effluent concentration of a single nutrient in large filters with good accuracy. However, in drainage waters originating from heavy textured soils, where there is a need for in-ditch filters to retain both dissolved reactive phosphorus (DRP) and ammonium (NH4) simultaneously, the suitability of a RSSCT approach to model both parameters must be proved. In this study, a decision support tool was used to identify appropriate media that may be placed in filters for the removal of DRP and NH4. The selected media for this study were sand and zeolite. Both media were placed in acrylic tubes each with an internal diameter of 0.01 m and with lengths ranging from 0.1 to 0.4 m, and their performance for simultaneous removal of DRP and NH4 (1 mg DRP and NH4-N L-1) from water was evaluated. The data generated from the RSSCTs were used to model DRP and NH4 removals in 0.4 m-long laboratory columns of internal diameter 0.1 m, which had the same media configuration as the small columns and were operated using the same infiuent concentrations. The developed model successfully predicted the effluent concentration of both the DRP and NH4-N from the large columns. This indicates using RSSCTs to model the performance of filters will produce substantial savings in operational, financial and labour costs, without affecting the accuracy of model predictions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据