4.7 Article

Preparation of nanoclay embedded polymeric membranes for the filtration of natural organic matter (NOM) in a circular crossflow filtration system

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jwpe.2020.101408

关键词

Membrane filtration; Membrane fouling; Nanoclay; Water purification; Circular crossflow channel

资金

  1. Newton-Bhabha Higher Education Initiative Fund [HEP151642]
  2. Royal Academy of Engineering, UK

向作者/读者索取更多资源

In-house and commercial membranes were used with different properties for humic acid separation in a circular crossflow filtration system to determine the membranes' performances. The in-house membranes were fabricated with the addition of bentonite nanoclay in Mendall, polyvinylidenefluoride (PVDF), polyphenylsulfone (PPSU), polysulfone (PSF) and polyether sulfone (PES) polymers. Bentonite nanoclay is recognized as a promising material for membrane applications due to its ability to produce membranes with superior properties such as the mechanical strength, large surface areas, adsorbing, antifouling and well-defined pore morphology. Three types of commercial membranes were also used for humic acid removal from water. The morphology, surface roughness, porosity and average pore size of the in-house and commercial membranes were then compared. The XM50 commercial membranes showed smooth and even surface topography as compared to other commercial and in-house membranes. The addition of bentonite into the polymer changed the morphological structure, surface roughness, pore size of the polymeric membranes. Pure water flux, permeate flux and rejection of humic acid were compared for in-house polymeric membranes and commercial membranes in a circular crossflow filtration system. It was observed that the fouling of humic acid was reduced by the addition of bentonite nanoclay in the in-house polymeric membranes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据