4.8 Article

Identification and evaluation of defects in selective laser melted 316L stainless steel parts via in-situ monitoring and micro computed tomography

期刊

ADDITIVE MANUFACTURING
卷 35, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.addma.2020.101287

关键词

Powder bed fusion; Additive manufacturing; Selective laser melting; In-situ monitoring; Micro computed tomography

资金

  1. National Research Foundation, Prime Minister's Office, Singapore under its Medium-Sized Centre funding scheme

向作者/读者索取更多资源

Additive manufacturing has opened doors for the efficient fabrication of individually tailored and complicated functional parts. However, the three-dimensional (3D) printing process is vulnerable to defects generation, necessitating the need for in-situ monitoring and control technologies for quality assessment of parts. An in-situ monitoring system (IMS) based on optical imaging was developed in-house for implementation on the selective laser melting process. A digital single lens reflex camera, mirror and several sets of light emitting diode strip lights formed the main constituents of the IMS. Cylindrical samples of 316L stainless steel were printed with variations in their energy density. Features taken in optical images were extracted and evaluated via image processing. Micro computed tomography (CT), which is capable of assessing the internal defects and recovering the 3D representation of a structure, was used as a validation method to correlate the features identified in the optical images. Results have shown that features captured in-situ were correlated to defects detected by micro CT, revealing the potential of using optical images captured during printing as an indicator to the extent of defects present in selective laser melted parts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据