4.5 Article

Microstructure and Mechanical Properties of BCC-FCC Eutectics in Ternary, Quaternary and Quinary Alloys From the Al-Co-Cr-Fe-Ni System

期刊

FRONTIERS IN MATERIALS
卷 7, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmats.2020.567793

关键词

high entropy alloy; eutectic; nano-indentation; microindentation; miniature testing; heat treatment

资金

  1. research framework INNO-KOM (Project EVERAM) [49VF180027]
  2. German Ministry of Economics and Energy (BMWi)

向作者/读者索取更多资源

This study aimed at understanding the structure and properties of dual-phase eutectics in ternary, quaternary, and quinary alloys of the Al-Co-Cr-Fe-Ni system. The alloys at case were i) Ni48Fe34Al18, ii) Ni(44)Fe(20)Cr(20)Al(16,)and iii) Ni34.4Fe16.4Co16.4Cr16.4Al16.4. Samples in the form of cylindrical bars, diameter 10 mm x 150 mm, were produced by arc melting and suction casting from pure elements (>99.9 wt%). Bridgman solidification at low growth velocity was used to produce additional samples with large eutectic spacing and lamellae thickness of the two phases body-centered cubic (BCC)-B2 and face-centered cubic (FCC) in order to facilitate phase characterization by energy-dispersive X-ray analysis (scanning electron microscopy/energy-dispersive spectroscopy) and nano-indentation. In agreement with thermodynamic calculations, each of the phases was found to be multi-component and contain all alloying elements in distinct amounts. The mechanical properties of the individual phases were analyzed in relation to their composition using nano-indentation experiments. These measurements revealed some insights into high-entropy effects and their contribution to the elastoplastic response to indentation loading. Further analysis focused on as-cast as well as heat-treated samples comprising phase fraction measurements, micro-indentation, and miniature testing in three-point bending configuration. For optimum heat treatment conditions, a good balance of strength and ductility was obtained for each of the investigated alloys. Further work is necessary in order to assess their capability as structural materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据