4.7 Article

Polymer Composites Containing Phase-Change Microcapsules Displaying Deep Undercooling Exhibit Thermal History-Dependent Mechanical Properties

期刊

ADVANCED MATERIALS TECHNOLOGIES
卷 5, 期 10, 页码 -

出版社

WILEY
DOI: 10.1002/admt.202000286

关键词

bistable; mechanical properties; microcapsules; microfluidic technology; supercooling

资金

  1. Department of Defense/US Army [W911NF-17-1-0351]
  2. National Natural Science Foundation of China [51672176]
  3. Key Research and Development Program of Wuhu [2019YF07]
  4. Science and Technology Major Project of Anhui Province [18030901093]

向作者/读者索取更多资源

Microencapsulated materials are receiving broad attention for applications as diverse as energy storage and conversion, biomedicine, self-healing materials, and electronics. Here, a general microfluidic approach is presented to prepare phase-change material-infilled microcapsules with unique thermal and mechanical properties. Aqueous sodium acetate solutions are encapsulated by an acrylate-based shell via a microfluidic method. To understand and optimize microcapsule formation, flow behavior during the encapsulation is numerically simulated. When the microcapsules are embedded in an acrylate matrix (same composition as the shell wall material), the microcapsules exhibit a significant 46.6 oC difference between the crystallization and melting temperatures as determined by differential scanning calorimetry at a rate of 10 oC per min. Variable temperature dynamic mechanical analysis over the range of 50 to -90 oC reveals up to a 50% change in the composite's elastic modulus at a given temperature, depending on if the sample is being cooled or heated, due to significant undercooling of the core material crystallization as shown by X-ray diffraction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据