4.7 Article

Pattern Directive Sensing Selectivity of Graphene for Wearable Multifunctional Sensors via Femtosecond Laser Fabrication

期刊

ADVANCED MATERIALS TECHNOLOGIES
卷 5, 期 11, 页码 -

出版社

WILEY
DOI: 10.1002/admt.202000446

关键词

E-skins; femtosecond laser; graphene-based sensors; pattern arrays; sensing selectivity

资金

  1. National Natural Science Foundation of China [61705125, 51704188, 51702199]
  2. Natural Science Foundation of Shaanxi Provincial Department of Education [2019JQ-233]
  3. Open Fund of Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials [2019GXYSOF10]

向作者/读者索取更多资源

Graphene has great potential in wearable sensors. However, the sensing selectivity of graphene-based sensors is still a big challenge, limiting their application in the multifunctional sensors. Herein, different types and distributions of defects are introduced into graphene by femtosecond laser patterning to realize sensing selectivity for wearable multifunctional sensors. The imperfect graphene with four pattern arrays, circle, square, triangle, and hexagon with none, right, acute, and obtuse angle, is fabricated by laser to control the types and distributions of defects. The graphene with different patterns shows remarkable sensing selectivity, owing to the dangling bonds and vacancies on the edge of patterns. The graphene-based sensor with the circle pattern array is used to detect the strain variation; the triangle one is for temperature detection; and the hexagon one can collect the information of gas. The gauge factor is demonstrated to be as high as approximate to 10(4). The as-produced sensor with the above-mentioned four patterns can simultaneously detect body pulse, temperature, and harmful gas by attaching to human body or clothes, offering real-time health monitoring and protection. The patterned graphene-based sensors with high sensing selectivity are expected to develop multifunctional sensor platform and versatile artificial electronic skin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据