4.6 Article

Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest

期刊

BMC MICROBIOLOGY
卷 15, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12866-015-0491-8

关键词

Tropical rainforest; GeoChip; Microbial functional gene diversity; Microbial metabolic potential; Available nitrogen

资金

  1. public welfare project of the national scientific research institution, China [CAFYBB2011004, CAFRIFEEP201101]
  2. National Biological Specimens and Resources Sharing Platform in Nature Reserve [2005DKA21404]
  3. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15010302]
  4. Graduate student research innovation project in Hunan province [CX2014B095]

向作者/读者索取更多资源

Background: Tropical rainforests cover over 50 % of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Results: Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P < 0.05) different among three sampling sites. The relative abundance of genes related to N cycling detected was significantly (P < 0.05) different, mostly derived from the uncultured bacteria. The gene categories related to ammonification had a high relative abundance. Both canonical correspondence analysis and multivariate regression tree analysis showed that soil available N was the most correlated with soil microbial functional gene structure. Conclusions: Overall high microbial functional gene diversity and different soil microbial metabolic potential for different biogeochemical processes were considered to exist in tropical rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据