4.8 Article

Graphene fatigue through van der Waals interactions

期刊

SCIENCE ADVANCES
卷 6, 期 42, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abb1335

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canada Foundation for Innovation (CFI)
  3. Erwin Edward Hart Professorship
  4. Ontario Ministry of Research and Innovation Early Career Researcher Award
  5. Canada Research Chairs Program
  6. Ontario Research FundsResearch Excellence Program

向作者/读者索取更多资源

Graphene is often in contact with other materials through weak van der Waals (vdW) interactions. Of particular interest is the graphene-polymer interface, which is constantly subjected to dynamic loading in applications, including flexible electronics and multifunctional coatings. Through in situ cyclic loading, we directly observed interfacial fatigue propagation at the graphene-polymer interface, which was revealed to satisfy a modified Paris' law. Furthermore, cyclic loading through vdW contact was able to cause fatigue fracture of even pristine graphene through a combined in-plane shear and out-of-plane tear mechanism. Shear fracture was found to mainly initiate at the fold junctions induced by cyclic loading and propagate parallel to the loading direction. Fracture mechanics analysis was conducted to explain the kinetics of an exotic self-tearing behavior of graphene during cyclic loading. This work offers mechanistic insights into the dynamic reliability of graphene and graphene-polymer interface, which could facilitate the durable design of graphene-based structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据