4.8 Article

Multioctave supercontinuum generation and frequency conversion based on rotational nonlinearity

期刊

SCIENCE ADVANCES
卷 6, 期 34, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abb5375

关键词

-

资金

  1. U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0019291]
  2. Air Force Office of Scientific Research (AFOSR) [FA9550-16-1-0149, FA9550-15-1-0037]
  3. UCF College of Graduate Studies
  4. Central Florida Physics Research Exchange Program
  5. National Science Foundation (NSF) [PHY-1707237]
  6. U.S. Air Force Office of Scientific Research (AFOSR) [FA9550-18-1-0223]
  7. Defense Advanced Research Projects Agency (DARPA) [D18AC00011]
  8. U.S. Department of Energy (DOE) [DE-SC0019291] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The field of attosecond science was first enabled by nonlinear compression of intense laser pulses to a duration below two optical cycles. Twenty years later, creating such short pulses still requires state-of-the-art few-cycle laser amplifiers to most efficiently exploit instantaneousoptical nonlinearities in noble gases for spectral broadening and parametric frequency conversion. Here, we show that nonlinear compression can be much more efficient when driven in molecular gases by pulses substantially longer than a few cycles because of enhanced optical nonlinearity associated with rotational alignment. We use 80-cycle pulses from an industrial-grade laser amplifier to simultaneously drive molecular alignment and supercontinuum generation in a gas-filled capillary, producing more than two octaves of coherent bandwidth and achieving >45-fold compression to a duration of 1.6 cycles. As the enhanced nonlinearity is linked to rotational motion, the dynamics can be exploited for long-wavelength frequency conversion and compressing picosecond lasers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据