4.8 Article

Annexin A1-dependent tethering promotes extracellular vesicle aggregation revealed with single-extracellular vesicle analysis

期刊

SCIENCE ADVANCES
卷 6, 期 38, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abb1244

关键词

-

资金

  1. Kowa Company Ltd. (Tokyo, Japan)
  2. NIH [R01 HL136431, R01 HL141917, R01 HL147095]
  3. Harvard Catalyst Advanced Microscopy Pilot grant
  4. Harvard Center for Biological Imaging
  5. NIH SIG award [1S10RR029237-01]

向作者/读者索取更多资源

Extracellular vesicles (EVs) including plasma membrane-derived microvesicles and endosomal-derived exosomes aggregate by unknown mechanisms, forming microcalcifications that promote cardiovascular disease, the leading cause of death worldwide. Here, we show a framework for assessing cell-independent EV mechanisms in disease by suggesting that annexin A1 (ANXA1)-dependent tethering induces EV aggregation and microcalcification. We present single-EV microarray, a method to distinguish microvesicles from exosomes and assess heterogeneity at a single-EV level. Single-EV microarray and proteomics revealed increased ANXA1 primarily on aggregating and calcifying microvesicles. ANXA1 vesicle aggregation was suppressed by calcium chelation, altering pH, or ANXA1 neutralizing antibody. ANXA1 knockdown attenuated EV aggregation and microcalcification formation in human cardiovascular cells and acellular three-dimensional collagen hydrogels. Our findings explain why microcalcifications are more prone to form in vulnerable regions of plaque, regulating critical cardiovascular pathology, and likely extend to other EV-associated diseases, including autoimmune and neurodegenerative diseases and cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据