4.4 Article

Hydrochemical interactions in dilute phoretic suspensions: From individual particle properties to collective organization

期刊

PHYSICAL REVIEW FLUIDS
卷 5, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevFluids.5.104203

关键词

-

资金

  1. European Research Council under the European Union's Horizon 2020 research and innovation program [714027]

向作者/读者索取更多资源

Janus phoretic colloids (JPs) self-propel as a result of self-generated chemical gradients and exhibit spontaneous nontrivial dynamics within phoretic suspensions, on length scales much larger than the microscopic swimmer size. Such collective dynamics arise from the competition of (i) the self-propulsion velocity of the particles, (ii) the attractive/repulsive chemically mediated interactions between particles, and (iii) the flow disturbance they introduce in the surrounding medium. These three ingredients are directly determined by the shape and physicochemical properties of the colloids' surface. Owing to such link, we adapt a recent and popular kinetic model for dilute suspensions of chemically active JPs where the particle's far-field hydrodynamic and chemical signatures are intrinsically linked and explicitly determined by the design properties. Using linear stability analysis, we show that self-propulsion can induce a wave-selective mechanism for certain particles' configurations consistent with experimental observations. Numerical simulations of the complete kinetic model are further performed to analyze the relative importance of chemical and hydrodynamic interactions in the nonlinear dynamics. Our results show that regular patterns in the particle density are promoted by chemical signaling but prevented by the strong fluid flows generated collectively by the polarized particles, regardless of their chemotactic or antichemotactic nature, i.e., for both puller and pusher swimmers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据