4.1 Article

Rapidly converging chaos indicator for studying dynamic aperture in a storage ring with space charge

期刊

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevAccelBeams.23.084601

关键词

-

资金

  1. U.S. Department of Energy

向作者/读者索取更多资源

The determination of dynamic aperture in storage rings and colliders is a numerically intensive procedure. When realistic space-charge forces come into consideration, the numerical load becomes even heavier. Furthermore, dynamic aperture estimation using chaos indicators like frequency map analysis (FMA) raises reliability issues when the dynamical system has a time-dependent perturbation like the space-charge force. In this article, we apply a rapidly converging chaos indicator called reversibility error method (REM) to study the space-charge contribution to the dynamic aperture of the integrable optics test accelerator (IOTA) storage ring at a small value of the space charge tune shift. The strength of REM is addressed through examples, including a particle-core model of halo formation. We also develop a toy model of the IOTA lattice to further reduce the computing time required to estimate the dynamic aperture, and we compare this model with a realistic space-charge simulation for verification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据