4.6 Article

Spin Coating Immobilisation of C-N-TiO2 Co-Doped Nano Catalyst on Glass and Application for Photocatalysis or as Electron Transporting Layer for Perovskite Solar Cells

期刊

COATINGS
卷 10, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/coatings10111029

关键词

thin film; spin coating; immobilisation; film thickness; photocatalytic decolouration; energy harvesting; perovskite solar cells

资金

  1. NRF South Africa
  2. Romanian Ministry of Research and Innovation through the Core Program [18N/2019]

向作者/读者索取更多资源

Producing active thin films coated on supports resolves many issues of powder-based photo catalysis and energy harvesting. In this study, thin films of C-N-TiO2 were prepared by dynamic spin coating of C-N-TiO2 sol-gel on glass support. The effect of spin speed and sol gel precursor to solvent volume ratio on the film thickness was investigated. The C-N-TiO2-coated glass was annealed at 350 degrees C at a ramping rate of 10 degrees C/min with a holding time of 2 hours under a continuous flow of dry N-2. The C-N-TiO2 films were characterised by profilometry analysis, light microscopy (LM), and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The outcomes of this study proved that a spin coating technique followed by an annealing process to stabilise the layer could be used for immobilisation of the photo catalyst on glass. The exposure of C-N-TiO2 films to UV radiation induced photocatalytic decolouration of orange II (O.II) dye. The prepared C-N-TiO2 films showed a reasonable power conversion efficiency average (PCE of 9%) with respect to the reference device (15%). The study offers a feasible route for the engineering of C-N-TiO2 films applicable to wastewater remediation processes and energy harvesting in solar cell technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据