4.7 Article

An Automatic Model Selection-Based Machine Learning Framework to Estimate FORC Distributions

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2020JB020418

关键词

-

资金

  1. National Institute of Advanced Industrial Science and Technology, Ministry of Economy, Trade and Industry, Japan
  2. Australian Research Council [DP160100805, DP200100765]
  3. European Research Council under the European Union [320750]
  4. European Research Council (ERC) [320750] Funding Source: European Research Council (ERC)
  5. Australian Research Council [DP200100765] Funding Source: Australian Research Council

向作者/读者索取更多资源

First-order reversal curve (FORC) distributions are a powerful diagnostic tool for characterizing and quantifying magnetization processes in fine magnetic particle systems. Estimation of FORC distributions requires the computation of the second-order mixed derivative of noisy magnetic hysteresis data. This operation amplifies measurement noise, and for weakly magnetic systems, it can compromise estimation of a FORC distribution. Previous processing schemes, which are based typically on local polynomial regression, have been developed to smooth FORC data to suppress detrimental noise. Importantly, the smoothed FORC distribution needs to be consistent with the measurement data from which it was estimated. This can be a challenging task even for expert users, who must adjust subjectively parameters that define the form and extent of smoothing until a satisfactory FORC distribution is obtained. For nonexpert users, estimation of FORC distributions using inappropriate smoothing parameters can produce distorted results corrupted by processing artifacts, which can lead to spurious inferences concerning the magnetic system under investigation. We have developed a statistical machine learning framework based on a probabilistic model comparison to guide the estimation of FORC distributions. An intuitive approach is presented that reveals regions of a FORC distribution that may have been smoothed inappropriately. An associated metric can also be used to compare data preparation and local regression schemes to assess their suitability for processing a given FORC data set. Ultimately, our approach selects FORC smoothing parameters in a probabilistic fashion, which automates the derivative estimation process regardless of user expertise.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据