4.7 Article

Enrichment of beneficial cucumber rhizosphere microbes mediated by organic acid secretion

期刊

HORTICULTURE RESEARCH
卷 7, 期 1, 页码 -

出版社

NANJING AGRICULTURAL UNIV
DOI: 10.1038/s41438-020-00380-3

关键词

-

资金

  1. Natural Science Foundation of Jiangsu Province [BK20170724]
  2. Natural Science Foundation of China [31902107]
  3. Special Fund for Agro-scientific Research in the Public Interest - Integrated Management Technology of Crop Wilt Disease [201503110]
  4. Innovative Research Team Development Plan of the Ministry of Education of China [IRT_17R56]
  5. Fundamental Research Funds for the Central Universities [KYT201802, KYXK2020010, KJQN202017]

向作者/读者索取更多资源

Resistant cultivars have played important roles in controlling Fusarium wilt disease, but the roles of rhizosphere interactions among different levels of resistant cultivars are still unknown. Here, two phenotypes of cucumber, one resistant and one with increased susceptibility to Fusarium oxysporum f.sp. cucumerinum (Foc), were grown in the soil and hydroponically, and then 16S rRNA gene sequencing and nontargeted metabolomics techniques were used to investigate rhizosphere microflora and root exudate profiles. Relatively high microbial community evenness for the Foc-susceptible cultivar was detected, and the relative abundances of Comamonadaceae and Xanthomonadaceae were higher for the Foc-susceptible cultivar than for the other cultivar. FishTaco analysis revealed that specific functional traits, such as protein synthesis and secretion, bacterial chemotaxis, and small organic acid metabolism pathways, were significantly upregulated in the rhizobacterial community of the Foc-susceptible cultivar. A machine-learning approach in conjunction with FishTaco plus metabolic pathway analysis revealed that four organic acids (citric acid, pyruvate acid, succinic acid, and fumarate) were released at higher abundance by the Foc-susceptible cultivar compared with the resistant cultivar, which may be responsible for the recruitment of Comamonadaceae, a potential beneficial microbial group. Further validation demonstrated that Comamonadaceae can be cultured by these organic acids. Together, compared with the resistant cultivar, the susceptible cucumber tends to assemble beneficial microbes by secreting more organic acids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据