4.5 Article

Vertical Propagation of Wave Perturbations in the Middle Atmosphere on Mars by MAVEN/IUVS

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2020JE006481

关键词

-

资金

  1. JSPS [15H03731, 16H0229, 16K05566, 19K03934, 18H04453, 20H04605]
  2. NASA
  3. NASA's MAVEN Participating Scientist Program [12-MAVENPS12-0017]
  4. Astrobiology Center Program of National Institutes of Natural Science (NINS) [AB291015]
  5. Grants-in-Aid for Scientific Research [20H04605, 19K03934, 16K05566, 18H04453, 15H03731] Funding Source: KAKEN

向作者/读者索取更多资源

This work offers the first in-depth study of the global characteristics of wave perturbations in temperature profiles at 20-140 km altitudes derived from the Imaging Ultraviolet Spectrograph (IUVS) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. The peak amplitudes of waves seen in temperature profiles exceed 20% of the mean background, especially on the nightside, which is larger than those in Earth's mesosphere and thermosphere. The wave perturbations generate an instability layer around 70-100 km on the nightside, which potentially causes wave-breaking and turbulences. Our results highlighted a seasonal variation in the latitudinal distribution of nightside perturbations. Amplitudes of wave perturbations were found to be large in the northern low-latitude region and the southern polar region during the first half of the year (L-s = 0-180 degrees). An increase of waves in the spectral density was found in southern low-latitude regions in the latter half of the year (L-s = 180-360 degrees). Vertical wavenumber spectral density in the Martian middle atmosphere shows a power-law dependence with a logarithmic spectral slope of -3, similar to the features seen in the Earth's atmosphere. The derived spectral power density suggests the longer waves growing with height while the effective dissipation of shorter waves occurs. The strong CO(2)15-micron band cooling can effectively dissipate shorter waves. In contrast, the spectral power density at longer waves suggests an amplitude growth with height of unsaturated waves up to the lower thermosphere. Plain Language Summary Atmospheric waves are recognized as an important part of the terrestrial climate system. This work offers the first in-depth study of the global characteristics of wave perturbations in temperature profiles in the Martian middle atmosphere. The peak amplitudes of waves seen in temperature profiles exceed 20% of the mean background, especially on the nightside, which is larger than those in Earth's mesosphere and thermosphere. We find that the wave perturbations generate an instability layer around 70-100 km on the nightside. The longer waves suggest the amplitudes grow with height which becomes large enough to distort the Martian upper atmosphere significantly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据