4.6 Review

Tumor Microenvironment-Responsive Nanomaterials as Targeted Delivery Carriers for Photodynamic Anticancer Therapy

期刊

FRONTIERS IN CHEMISTRY
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fchem.2020.00758

关键词

photodynamic therapy; photosensitizer; drug delivery; tumor microenvironment; stimuli-responsive nanomaterials

资金

  1. Funds of Talents for High-level University in the Construction of Guangzhou Medical University [B195002009025]

向作者/读者索取更多资源

Photodynamic therapy (PDT), as an alternative approach to treat tumors through reactive oxygen species (ROS) produced by the activated photosensitizers (PS) upon light irradiation, has attracted wide attention in recent years due to its low invasive and highly efficient features. However, the low hydrophilicity and poor targeting of PS limits the clinical application of PDT. Stimuli-responsive nanomaterials represent a major class of remarkable functional nanocarriers for drug delivery. In particular, tumor microenvironment-responsive nanomaterials (TMRNs) can respond to the special pathological microenvironment in tumor tissues to release the loaded drugs, that allows them to control the release of PS within tumor tissues. Recent studies have demonstrated that TMRNs can achieve the targeted release of PS at tumor sites, increase the concentration of PS in tumor tissues, and reduce side effects of PDT. Hence, in the present paper, we review TMRNs, mainly including pH-, redox-, enzymes-, and hypoxia-responsive smart nanomaterials, and focus on the application of these smart nanomaterials as targeted delivery carriers of PS in photodynamic anticancer therapy, to further boost the development of PDT in tumor therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据