4.7 Article

Cellular automaton model for the simulation of laser cladding profile of metal alloys

期刊

MATERIALS & DESIGN
卷 195, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2020.109033

关键词

Laser cladding; Droplet forming method; Cellular automaton; Contour simulation

资金

  1. National Natural Science Foundation of China [51875104]

向作者/读者索取更多资源

Based on the mechanism of laser-powder interaction and droplet forming method, a cellular automaton simulation model of laser cladding layer morphology is introduced. In the model, the influences of thermophysical parameters including specific heat and thermal conductivity are taken into consideration. Meanwhile, the relationships involving laser power, scan speed and powder feed rate and the morphology parameters of the cladding layer are established. Subsequently, in order to verify the applicability and accuracy of the simulation of the cladding layer, single-track experiments of Stellite6, Ni60AA and SUS316, materials with different thermophysical properties, were carried out under different process parameters, respectively. Additionally, the stepwise method is applied to multitrack cladding experiments with different overlap to obtain morphological parameters of different tracks. The morphology of the cladding layer calculated by the model is in good agreement with the experimental results. Both of the relative errors of width and height are less than 5%, and the relative error of the cross-sectional area is less than 9%, which affirms the possibility of the model to predict the cladding morphology of different materials under different process parameters. This research can optimize process parameters and improve the forming quality of laser cladding. (c) 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据