4.3 Article

Dnmt3bregulates DUX4 expression in a tissue-dependent manner in transgenic D4Z4 mice

期刊

SKELETAL MUSCLE
卷 10, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13395-020-00247-0

关键词

Facioscapulohumeral muscular dystrophy; DUX4; DNA methyltransferase 3B; 5 mouse model; Mouse embryonic stem cells; Epigenetics; Lymphoid organs

资金

  1. US National Institutes of Health (National Institute of Neurological Disorders and Stroke) [P01NS069539]
  2. US National Institutes of Health (National Institute of Arthritis and Musculoskeletal and Skin Diseases) [R01AR066248]
  3. Prinses Beatrix Spierfonds [W.OR17-04]
  4. Spieren voor Spieren
  5. European Union Horizon 2020 Research and Innovation Program (Marie Sklodowska-Curie Individual Fellowship) [795655]
  6. Marie Curie Actions (MSCA) [795655] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

Background Facioscapulohumeral muscular dystrophy (FSHD) is a skeletal muscle disorder that is caused by derepression of the transcription factor DUX4 in skeletal muscle cells. Apart from SMCHD1, DNMT3B was recently identified as a disease gene and disease modifier in FSHD. However, the exact role of DNMT3B at the D4Z4 repeat array remains unknown. Methods To determine the role of Dnmt3b on DUX4 repression, hemizygous mice with a FSHD-sized D4Z4 repeat array (D4Z4-2.5 mice) were cross-bred with mice carrying an in-frame exon skipping mutation inDnmt3b(Dnmt3b(MommeD14)mice). Additionally, siRNA knockdowns ofDnmt3bwere performed in mouse embryonic stem cells (mESCs) derived from the D4Z4-2.5 mouse model. Results In mESCs derived from D4Z4-2.5 mice, Dnmt3b was enriched at the D4Z4 repeat array and DUX4 transcript levels were upregulated after a knockdown ofDnmt3b. In D4Z4-2.5/Dnmt3b(MommeD14)mice, Dnmt3b protein levels were reduced; however, DUX4 RNA levels in skeletal muscles were not enhanced and no pathology was observed. Interestingly, D4Z4-2.5/Dnmt3b(MommeD14)mice showed a loss of DNA methylation at the D4Z4 repeat array and significantly higher DUX4 transcript levels in secondary lymphoid organs. As these lymphoid organs seem to be more sensitive to epigenetic modifiers of the D4Z4 repeat array, different immune cell populations were quantified in the spleen and inguinal lymph nodes of D4Z4-2.5 mice crossed with Dnmt3b(MommeD14)mice or Smchd1(MommeD1)mice. Only in D4Z4-2.5/Smchd1(MommeD1)mice the immune cell populations were disturbed. Conclusions Our data demonstrates that loss of Dnmt3b results in derepression of DUX4 in lymphoid tissues and mESCs but not in myogenic cells of D4Z4-2.5/Dnmt3b(MommeD14)mice. In addition, the Smchd1(MommeD1)variant seems to have a more potent role in DUX4 derepression. Our studies suggest that the immune system is particularly but differentially sensitive to D4Z4 chromatin modifiers which may provide a molecular basis for the yet underexplored immune involvement in FSHD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据