4.7 Article

The correlation of IRE1α oxidation with Nox4 activation in aging-associated vascular dysfunction

期刊

REDOX BIOLOGY
卷 37, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.redox.2020.101727

关键词

Oxidative stress; NADPH oxidase 4; Reactive oxygen species; Endoplasmic reticulum; Vascular dysfunction

资金

  1. National Research Foundation of Korea (NRF), Republic of Korea [NRF-2018R1D1A3B07049580, 2017R1E1A1A01073796, 2017M3A9G7072719]
  2. National Research Foundation of Korea [2017R1E1A1A01073796, 2017M3A9G7072719] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Oxidative stress attributable to the activation of a Nox4-containing NADPH oxidase is involved in aging-associated vascular dysfunction. However, the Nox4-induced signaling mechanism for the vascular alteration in aging remains unclear. In an aged aorta, the expression of Nox4 mRNA and protein by Nox family of genes was markedly increased compared with a young aorta. Nox4 localization mainly to ER was also established. In the aorta of Nox4 WT mice aged 23-24 months (aged), reactive oxygen species (ROS) and endoplasmic reticulum (ER)/oxidative stress were markedly increased compared with the counter KO mice. Furthermore, endothelial functions including eNOS coupling process and acetylcholine-induced vasodilation were significantly disturbed in the aged WT, slightly affected in the counter KO aorta. Consistently, in D-galactose-induced in vitro aging condition, ER-ROS and its associated ER Nox4 expression and activity were highly increased. Also, in chronic Dgalactose-treated condition, IRE1 alpha phosphorylation and XBP-1 splicing and were transiently increased, but IRE1 alpha sulfonation was robustly increased in the aging Nox4 WT condition when compared to the counter KO condition. In vitro D-gal-induced aging study, the phenomenon were abrogated with Nox4 knock-down condition and was significantly decreased in GKT, Nox4 inhibitor and 4-PBA, ER chemical chaperone-treated human umbilical vein endothelial cells. The state of Nox4-based ER redox imbalance/ROS accumulation is suggested to determine the pathway the UPR; IRE1 alpha phosphorylation and XBP-1 splicing and the UPR failure; IRE1 alpha cysteine-based oxidation, especially sulfonation, finally controlling aging-associated vascular dysfunction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据