4.7 Article

A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: Role of Akt(Ser473)/GSK3β (Ser9)-mediated Nrf2 activation

期刊

REDOX BIOLOGY
卷 36, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.redox.2020.101644

关键词

Stroke; Neuroinflammation; Microglia polarization; Nrf2; Antioxidant; Functional recovery

资金

  1. Primary R&D Plan of Shaanxi Province [2017KW-055, 2018SF-293]
  2. Scientific Research Plan Projects of Shaanxi Provincial Education Department [17JK0764]
  3. Project of Key Research and Development Plan of Shaanxi [2017ZDCXL-SF-01-02-01]
  4. Changjiang Scholars and Innovative Research Team in University [IRT_15R55]
  5. National Natural Science Foundation of China [31971143]
  6. Opening Foundation of Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education

向作者/读者索取更多资源

Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, yet lacks effective therapeutic agents. Previously, we discovered one novel synthetic compound, tanshinol borneol ester (DBZ), possesses anti-inflammatory and antiatherosclerotic activities, whereas little is known about its effects in CNS. Therefore, the present study aims to explore the effects and potential mechanism of DBZ on neuroinflammation and microglial function. Our studies revealed that DBZ significantly inhibited NF-kappa B activity, suppressed the production of pro-inflammatory mediators meanwhile promoted M2 mediators expression in LPS-stimulated BV2 cells and mouse primary microglia cells. DBZ also exhibited antioxidant activity by enhancing Nrf2 nuclear accumulation and transcriptional activity, increasing HO-1 and NQO1 expression, and inhibiting LPS-induced ROS generation in BV2 cells. Importantly, the anti-neuroinflammatory and antioxidant effects of DBZ above were reversed by Nrf2 knockdown. Additionally, DBZ ameliorated sickness behaviors of neuroinflammatory mice induced by systemic LPS administration, and significantly reduced infract volume, improved sensorimotor and cognitive function in rats subjected to transient middle cerebral artery occlusion (tMCAO); besides, DBZ restored microglia morphological alterations and shifted the M1/M2 polarization in both murine models. Mechanistically, DBZ-induced Nrf2 nuclear accumulation and antioxidant enzymes expression were accompanied by increased level of p-Akt (Ser473) (activation) and p-GSK3P(Ser9) (inactivation), and decreased nuclear level of Fyn both in vitro and in vivo. Pharmacologically inhibiting PI3K or activating GSK3P markedly increased nuclear density of Fyn in microglia cells, which blocked the promoting effect of DBZ on Nrf2 nuclear accumulation and its antioxidant and anti-neuroinflammatory activities. Collectively, these results indicated the effects of DBZ on microglia-mediated neuroinflammation were strongly associated with the nuclear accumulation and stabilization of Nrf2 via the Akt (Ser473)/GSK3 beta(Ser9)/Fyn pathway. With anti-neuroinflammatory and antioxidant properties, DBZ could be a promising new drug candidate for prevention and/or treatment of cerebral ischemia and other neuroinflammatory disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据